

Script Guide
Digita™ Operating Environment

version 1.5
Part Number 6-2140-0001-01

Version 1.5

November 18, 1999

ii

Script Guide

© 1998 FlashPoint Technology, Inc. All Rights Reserved.

Digita, Digita Desktop and the Digita logo are trademarks or registered trademarks of
FlashPoint Technology, Inc. in the U.S. and other countries. All other brand or product
names are trademarks or registered trademarks of their respective companies or
organizations.

All information contained herein is the property of FlashPoint Technology, Inc., or its
licensors, and is protected by copyright law, international treaties, trade secrets, and may be
covered by U.S. and foreign patents. Any reproduction or dissemination of any portion of
this document, of the software, or other works derived from it is strictly forbidden unless
prior written permission is obtained from FlashPoint Technology, Inc.

The information contained herein is subject to change and may change without notice.
Version 1.5
November 18, 1999

iii

November 18, 1999

Table of Contents
About This Book v

1 Digita Script Language Overview 1
Writing and Using Scripts 1

Script Structure 2

2 Scripting Techniques 7
Error Checking 7

Capturing Images 8

Startup Scripts 10

Extracting Bits From a Bitfield 10

Watermark Placement 11

Japanese Text Usage In Scripts 12
 Version 1.5
 November 18, 1999

iv

Script Guide

Version 1.5
November 18, 1999

v

About This Book
f the

ming
Purpose
This manual provides an introduction to the Digita™ Script language, including an overview o
language and various techniques used in writing scripts.

Intended Audience
This manual is intended for users who have some prior experience with a scripting or program
language. It does not teach basic programming techniques.

Related Manuals
The Digita Script Reference provides a complete description of the Digita Script language.

Text Conventions

code sample code

italics references to other manuals
 Version 1.0
 November 18, 1999

vi

Script Guide

Version 1.0
November 18, 1999

1

Chapter 1 Digita Script Language Overview
ed by
ta
scripts

al
ics,
 the
te

n data
gical

e
dia are

rts

s are

must

t
The last
laced
ust be

le to

as

Digita™ script is a series of commands, expressed in plain ASCII text, which can be interpret
system software in a Digita-equipped camera. The scripts are independent of the actual Digi
camera. As scripts are loaded, the camera menus display the available scripts. Users select
from the menu options through the camera control buttons. The script language provides
commands to request additional user input during script execution.

The script interpreter processes the script line by line. The script language includes condition
branching (“if” constructs) as well as unconditional go-to statements. In addition to these bas
the language provides specialized commands to control the camera, retrieve information from
camera, and access the image data on disk. Also, the serial port can be used to control remo
devices.

The Digita script language supports marker and go-to control statements, keywords, commo
types (signed and unsigned integer, bitwise Boolean, fixed point, and strings) numeric and lo
operators, declaration statements, and variables and constants for all data types.

Scripts can be factory-installed in camera ROM or stored in removable media mounted on th
camera. Factory-installed scripts are always available for use, while scripts on removable me
available only when the media is inserted in the camera. Examples of scripts include:

• Scripts that provide hints to the camera about the type of picture to be taken (portrait, spo
action, and so on) so it can record the best image possible.

• Scripts that set white balance, bracketing, and other exposure information.

• Scripts that set up image stamps to place watermarks on the image. Typical image stamp
date and time, company logos, and signatures.

• Scripts that prompt users to take certain pictures. These scripts are useful for users who
document scenes according to a prescribed protocol. Examples of such users are:

– Insurance claim adjusters, who must document accident scenes or insured property.

– Real estate agents, who need a standardized series of images of property for sale,
perhaps for uploading to a World Wide Web site.

– Police photographers, who must document evidence from crime scenes.

Writing and Using Scripts

Scripts are plain text files created on Macintosh®, Windows®, or Unix® systems. The names of the

files follow DOS® naming conventions; that is, they are of the form XXXXXXXX.CSM. The firs
eight characters can be any combination of letters, numbers, and underscore characters (_).
four characters must be .CSM in order for Digita to recognize the file as a script. Scripts are p
in the SYSTEM directory on the camera, usually on a CompactFlash card. Each file name m
unique.

To install a script, simply place it in the SYSTEM directory of the camera. To do so, copy the fi
the SYSTEM directory from a computer or via a connection utility such as Digita Desktop™.
Please see the user manual for the application or the computer operating system for more
information on copying files. The Digita operating environment recognizes that a new script h
been installed when the camera is restarted or when the CompactFlash card is removed and
reinserted.
 Version 1.5
 November 18, 1999

2

Script Guide

ever
ey) to

llowed
he last

 found

llowed
t. The
ts is

s. It
 via

. The
pture),
dak

 name
 the
 menu

To actually use a script, enter menu mode on the camera. Then, select the script from which
menu it appears under. Press the softkey labeled “Start” (Minolta users press the “Edit” softtk
run the script.

Scripts have several statements which are required. A script begins with a name statement, fo
by mode, menu, and label statements. After the label statment comes the body of the script. T
line of the script is an exitscript statement. A brief explanation of each of these statements is
below. Detailed explanations are found in the Digita Script Reference.

Script Structure
Scripts have several statements which are required. A script begins with a name statement, fo
by mode, menu, and label statements. After the label statement comes the body of the scrip
last line of the script is an exitscript statement. A brief explanation of each of these statemen
found below. Detailed explanations are found in the Digita Script Reference.

Name Statement
The name statement is a long name for the script. The name is a string of up to 31 character
must be enclosed in double quotes (""). This name is used primarily from within other scripts
the GetScriptName() command. It does not appear in menus.

The format of the name statement is:

name "name of script"

This example sets the name of the script to "name of script".

Mode Statement
The mode statement is used to tell the camera in which mode to display the script in a menu
mode is a single number which specifies the mode. Currently, the supported modes are 0 (ca
1 (review), and 2 (play). Note that the review and play modes have been combined on the Ko
DC220, DC260, DC265, and DC290, and are the same for scripting purposes.

The format of the mode statement is:

mode 0

This example sets the mode for the script to the capture mode.

Menu Statement
The menu statement tells the camera under which menu to display the script label. The menu
is a string of up to 31 characters enclosed in double quotes (""). If the menu does not exist in
specified mode, it is created. If the menu does exist, the camera places the script under that
after the last item in the menu.

The format of the menu statement is:

menu "menu name"

This example sets the name of the menu in which this script appears to "menu name".
Version 1.5
November 18, 1999

Chapter 1. Digita Script Language Overview

3

menu.
 fairly
in the
l to

e".

 close

ould
n’t, the
e end

ipt
o

ments.
 user,
vered

ny
They
arts of

 after a
egin
Label Statement
The label statement tells the camera what name to display for the script under the specified
The label consists of up to 31 characters enclosed in double quotes (""). Usually, they will be
short in order to make them more readable. If a script uses the same label as another script
same menu, both labels will appear under the menu. As this is confusing to users, it is usefu
label each of your scripts differently.

The format of the label statement is:

label "label name"

This example sets the name which appears on the menu specified for this script to "label nam

Exitscript Statement
The last statement in a script should be an exitscript statement. It tells the script interpreter to
the script and return the camera to the standard operating mode.

The format of the exitscript statement is:

exitscript

An exitscript statement may also be placed elsewhere in a script. For example, the display c
show a menu that asks the user whether or not they want to capture more images. If they do
script can execute an exitscript statement to terminate the script without requiring a jump to th
of the script.

Sample Script
Below is an example of the minimum elements necessary for a valid script. Note that this scr
does nothing except appear in the capture mode in the Sample Scripts menu with the label D
Nothing.

name "Do nothing script example"
mode 0
menu "Sample Scripts"
label "Do Nothing"
exitscript

Other Statements
The rest of the script between the label and exitscript statements consists of a series of state
These statements tell the camera to actually do something, such as get information from the
write information to a file, or display information to the user. The other statement types are co
below. Details on these statements are available in the Digita Script Reference.

Comment Statements
Single-line comment statements start with the # symbol. The # symbol may be followed by a
number of characters. Comments are used to give information to anyone reading the script.
are often used to give details about the name of the script, how it operates, and how specific p
the script work. Comments stop at the end of the line on which the # symbol appears; that is,
carriage return. To continue a comment statement on another line, the other line must also b
with a # symbol.
 Version 1.5
 November 18, 1999

4

Script Guide

riage
 only

r

 of the
 used

will
at you

when
clared

pe, a

ither A

bers,

o are

rs.

 will

The format of the single-line comment statement is:

Some text which makes up the comment

Multi-line comment statements start with /* and end with */. Any number of characters and car
returns can be entered in between the multi-line comment indicators. Multi-line comments can
be used in scripts written specifically for products compatible with Digita Script version 1.5 o
newer.

The format of the multi-line comment statement is:

/* Some text
which makes up
the comment */

When there are many comments throughout a script, it is much easier to understand the logic
script, both for scripts written by oneself and especially for scripts that may be maintained or
by others.

Declaration Statements
Declaration statements allow you to tell the script interpreter what identifiers (variables) you
use in a script. Identifiers must be declared before they are used. FlashPoint recommends th
declare all of your variables near the beginning of the script. This makes them easier to find
reading a script. However, as long as the identifier is declared before it is used, it may be de
anywhere within the body of a script.

Declaration statements begin with the word “declare” and are then followed by an identifier ty
colon (:) and a list of identifier names.

Identifiers have the following naming rules:

• The first character of an identifier must be an upper or lower case letter of the alphabet, e
through Z or a through z.

• All characters in the identifier name after the first may be any combination of letters, num
and underscore (_) characters.

• Upper and lower case letters are not interpreted as the same. Because of this, Foo and fo
two different identifiers.

• Identifiers may be any length, but Digita Script only pays attention to the first 31 characte
Therefore, AReallyLongIdentifierNameThatYouAreUsing is seen by Digita Script as
AReallyLongIdentifierNameThatYo.

Declaration statements tell the Digita Script interpreter what kind of information the identifier
contain.

The allowable identifier types are:

Data Type Description

u An unsigned integer. This is an integer in the range of 0 to 4,294,967,296

(232). Begins with 0x for hexadecimal numbers.

i A signed integer. An integer in the range -2,147,483,648 (-231) to

2,147,483,647 (231-1). Begins with 0x for hexadecimal numbers.

f A fixed point number. A number in the range -32768.0000 to 32767.9999
decimal.
Version 1.5
November 18, 1999

Chapter 1. Digita Script Language Overview

5

s

ists of a
as

s
, the

he
e
 word

s A string. A sequence of characters surrounded by double quotes. The
maximum length of a string is 31. An example string is "abc123". Double
quotes may be used in a string by preceding them with a backslash (\)
character, for example, "abc\"123". To use a backslash character within a
string, precede it with an initial backslash, for example, "abc\\123".

t Same as and interchangeable with the s data type but with a maximum
string length of 255 characters. The t data type can only be used in script
written specifically for products compatible with Digita Script version
1.5 or newer.

n A DOS file name. A maximum of 8 characters, followed by a period (.),
and a 3 character extension all enclosed within double quotes. For
example, "Test_01.CSM".

b A bitfield. A bitfield is a 32-bit unsigned integer. Each bit of the bitfield
can be either true (1) or false (0). If the value is preceded by 0x, then the
value is hexadecimal. If the value is preceded by 0b, then the value is
binary. For example, in the number 0b1101, the first (lowest-order) bit is
true, the second bit is false, and the third and fourth bits are true.

Declaration statements have the following format:

declare u: variable1, dataValue

This example declares two unsigned integer variables named variable1 and dataValue.

Assignment Statements
Assignment statements are used to give values to identifiers. An assignment statement cons
variable name followed by an equal sign (=) followed by a value or another identifier which h
already had a value assigned.

The format of an assignment statement is:

variable1 = 2

This example sets the value of variable1 equal to 2.

Note that the right side of an assignment statement can include arithmetic operations such a
addition, subtraction, multiplication, and division for identifiers of type u, i, and f. For example
statement:

variable1 = dataValue + 2

sets the value of variable1 equal to to the value of dataValue plus 2.

For a complete list of operators and the types they can operate on, see the Digita Script Reference.

Conditional Statements
Conditional statements allow scripts to make decisions. A conditional statement consists of t
word “if” followed by a conditional expression. The following lines contain the statements to b
executed if the conditional expression is true. Finally, the conditional statement ends with the
end.

For example, the statement:

if variable1 == 2
variable1 = variable1 + 1
 Version 1.5
 November 18, 1999

6

Script Guide

 value
ord

 (less

 is
p to
 to

ame.

r
ally

the

e
ects of
closed

igita-

end

first determines whether or not the value of variable1 is equal to 2. If it is, then it adds 1 to the
of variable1. If not, then the script continues on the first line following the line containing the w
end.

Other comparisons that can be used in the conditional expression include > (greater than), <
than), and != (not equal to).

For a complete list of conditional operators and the types they can operate on, see the Digita Script
Reference.

Goto Statements
Goto statements allow the flow of a script to jump from one point in the script to another. This
usually done as the result of a conditional statement; if a particular condition is met then jum
another part of the script. The goto statement consists of the word goto followed by a marker
which the script execution should go.

The format of a goto statement is:

goto markerName

This example would jump to the place in the script which is identified by the marker markerN

Marker Statements
Marker statements are used with goto statements. They identify a location in a script. Marke
statements consist of a marker identifier followed by a colon (:). More script statements typic
follow a marker.

The format of a marker statement is:

Done:
exitscript

This marker example could be used by a goto statement to jump to the end of a script. Note
exitscript following the marker Done: which would be the last line of the script.

Command Statements
Command statements set up and execute the Digita Script language commands.Currently, th
Digita Script language has 70 command statements that give the scripter control over all asp
the device’s operation. A command statement generally includes one or more parameters en
within parentheses ().

An example of a command statement is:

Display ("Hello, world")

This example would display the words “Hello, world” on the camera’s display.

More details on command statements, including a complete list of commands supported by D
based cameras, may be found in the Digita Script Reference.
Version 1.5
November 18, 1999

7

Chapter 2 Scripting Techniques
rns an
r failed.If
ill be a

of the

ands
put
umes
cuted

efore
rs, it

tax
an
d.
This chapter describes the following scripting techniques:

• error checking

• capturing images

• startup scripts

• extracting bits from a bitfield

• watermark placement

• Japanese text usage in scripts

Error Checking
Digita Script provides a convenient method of error checking. Every command statement retu
error status. This status can be used to determine whether an issued command succeeded o
a command succeeds, an error status of 0 is returned. If the command fails, the error status w
number which indicates the reason for failure. Error codes are listed in the Digita Script Reference.
The error code returned will be a signed integer. Most often, the codes returned are positive
integers.

To access the returned status code, simply call the command statement as part of a variable
assignment. For example, the command:

declare i: status
status = 0
status = StartCapture ()

attempts to capture an image. If the StartCapture command is successful, the value of status will
be 0. If unsuccessful, status will contain an error code that may be checked for various failure
conditions.

Note that the status variable, status , is declared as a signed integer. The name of the status
variable does not matter. This example uses the name “status” simply to clarify the purpose
variable.

It is important that the script set the value of a status variable to 0 before using it. Not all comm
return 0 when they execute successfully. This is because commands which can allow user in
have to temporarily suspend execution of the script while waiting for input. the script then res
at the line following that command and does not have the opportunity to return a value if it exe
successfully. The commands for which this is true include WaitForShutter(), StartCapture(),
GetOption(), GetString(), and Wait(). It is good practice to always set the status variable to 0 b
using it. That way, it doesn’t matter whether the successful value is returned. If an error occu
will be returned promptly.

It is important to check the error status of critical operations in scripts. Errors, other than syn
errors, should not cause the script to stop operation. For example, if a script tries to capture
image and is unsuccessful, the script will continue running as if the image had been capture
 Version 1.5
 November 18, 1999

8

Script Guide

apture.
l. If it

 is not
he
he
of a
g” on

ed to be
tton)

era is
a will
age.

The short example below demonstrates how to check for the success or failure of an image c
The script attempts to capture an image. If it succeeds, it tells the user that it was successfu
fails, it informs the user of the value of the error code.

name "Error test"
mode 0
menu "Sample scripts"
label "Error Test"

declare i: status
status = 0

SetCaptureMode (still)

status = StartCapture ()

if status == 0
DisplayLine ("Image capture succeeded")
Wait (2000)

end

if status != 0
DisplayLine ("Image capture failed. Error ", status)
Wait (2000)

end

exitscript

Capturing Images
Digita Script provides a mechanism for capturing images via a script. However, if the camera
ready to capture an image and the script tries to do so, the script will continue running as if t
image capture was successful. There are several methods that can be used to determine if t
camera is ready to capture an image. In all cases, it is a good idea to check the error status
StartCapture command to determine whether or not it was successful. Refer to “Error Checkin
page 7 for more details on error checking.

When a script attempts to capture images as rapidly as possible, there are two cases that ne
checked for. The first is capturing images under user control (the user presses the shutter bu
and the second is capturing images automatically via script control.

When prompting the user to capture images, the quickest way to determine whether the cam
ready to capture new images is to attempt to issue a WaitForShutter() command. The camer
not successfully execute the WaitForShutter() command until it is ready to capture another im
The following code snippet checks for this:

declare i: status, SYSTEM_BUSY

Set SYSTEM_BUSY equal to the error status for a system busy error.
SYSTEM_BUSY = 12

Pict1:
 # Clear the status variable before using it
 status = 0
 status = WaitForShutter ("Picture of front of house")
 if status == SYSTEM_BUSY
 DisplayLine ("Processing Pictures...")
 # Give camera time to process images before checking again
Version 1.5
November 18, 1999

Chapter 2. Scripting Techniques

9

mera
or
thod is

. It
of a

ethod
hutter

atus()

re

image

pecific

 Wait (5000)
 goto Pict1
 end
 if status != 0
 # Some other error occured. Additional error checking could occur here
DisplayLine ("Insufficient disk space.", status)
 goto Done
 end
 SetCaptureMode (still)
 StartCapture ()

This particular code snippet just checks for a system busy error. This error will occur if the ca
is busy processing images and isn’t yet ready to capture another image. If a system busy err
occurs, it waits 5 seconds then attempts to issue a WaitForShutter() command again. This me
illustrated again in the CAPTURE.CSM example script which is part of the Digita Script SDK
may be useful to check for other errors based on what is likely to occur during the execution
particular script.

In the case where a script is automatically capturing images as rapidly as possible, another m
must be used. If you use the above method, the camera will wait until the user presses the s
button to capture the next image. This obviously won’t work when the camera is supposed to
capture images automatically. In this case, the best method is to check for the ipip bit of the
SystemStatus bitfield to be clear. The SystemStatus bitfield is returned by the GetCameraSt
command. This bit will be cleared when the camera has finished processing all images.

This method is slower than checking for WaitForShutter(), and so it should not be used when
capturing images manually. The reason that it is slower is that most Digita-based cameras a
capable of capturing more than one image at a time. If the script checks for the ipip bit to be
cleared, it will not be able to capture another image until all processing of the first image is
completed. If the WaitForShutter() check is used, the camera will be able to capture another
as soon as possible, even though the camera may still be processing the first image.

The following code snippet illustrates this method. The technique used here for extracting a s
bit from a bitfield is discussed elsewhere in this guide.

declare u: IPIP, processing
declare b: systemStatus, captureStatus, vendorStatus

set IPIP equal to the bitmask needed to extract the ipip bit from the
SystemStatus bitflag returned by GetCameraStatus()
IPIP = 0x10000000

Pict1:
 # Retrieve camera status information, including ipip bit.
 GetCameraStatus (systemStatus, captureStatus, vendorStatus)
 processing = systemStatus & IPIP

 if processing == IPIP
 DisplayLine ("Processing pictures...")
 # Give camera time to process images before checking again
 Wait (5000)
 goto Pict1
 end

SetCaptureMode (still)
StartCapture ()
 Version 1.5
 November 18, 1999

10

Script Guide

tarts
t it be

y, the
 the

pens

e

urned
 all
ach
et.

ific

ues.

ed to

ill be
tflag.

the
 run
Startup Scripts
Digita has the capability of running a script automatically when a Digita-based camera first s
up. Such a script is known as a startup script. The basic requirement of a startup script is tha
named STARTUP.CSM. The script itself is otherwise identical to other scripts.

One important issue to be aware of is that in order for a startup script to be executed properl
camera must be already set in the operating mode specified by the script before powering on
camera. Otherwise, the script will abort when the camera sets the operating mode. This hap
right before the user gains control of the camera when it is starting up.

Note that if a Kodak® DC220 or DC260 running a startup script has firmware 1.0.2 or older, th
startup script will always abort. This was fixed in firmware versions 1.0.3 and later. This issue
should not affect other cameras.

Extracting Bits From a Bitfield
Some information within Digita-based cameras is stored in bitfields. In particular, the data ret
by the Digita Script command GetCameraStatus() is stored in bitfields. The bitfields used are
variables declared with type ‘b’. This kind of variable holds 32 pieces, or bits, of information. E
bit is equal to either 0 or 1. If a bit is equal to 1, it is said to be set. If it is equal to 0, it is not s

When a value is returned in a bitfield, a simple calculation needs to be performed to extract a
particular bit from the bitfield. This calculation is performing an AND on the bitfield with a spec
number. The number varies depending on which bit needs to be extracted from the bitfield.
Understanding how this works is not important if you are unfamiliar with programming techniq
What is important is understanding how to use this procedure.

Two pieces of information are required in order to use this method. The first is the number us
AND the bitfield. This number is sometimes called a bitmask. Appendix E in the Digita Script
Reference contains a handy listing of the bitmasks needed for each position of a bitfield. The
second piece of information needed is the position of the bit needed within the bitfield. This w
a number from 1 to 32. For the purposes of Digita Script, position 1 is the leftmost bit in the bi
This is sometimes called the Most Signifigant Bit (MSB). Position 32, or rightmost bit, is
sometimes called the Least Signifigant Bit (LSB).

Once this information is obtained, simply AND them using the & operator. For example, use
following example script to determine whether the first bit of the bitfield ‘testField’ is set. When
"The bit is not set!" will be displayed.

This script appears as the item "Bitmask"
in the "Sample Scripts" menu.

name "bit set test"
mode 0
menu "Sample Scripts"
label "Bitmask"

declare b: testField
declare u: bitmask, result

Set testField to some arbitrary number for this example
testField = 1

Set bitmask equal to the appropriate number from table in
Appendix E of the Script Reference
bitmask = 0x10000000
Version 1.5
November 18, 1999

Chapter 2. Scripting Techniques 11

ed to

ber
stance
o, the

m the

from the

int of
e. To
ce from
,51

e

Perform the AND of the two numbers and check to see if the bit is set
result = testField & bitmask

if result == bitmask
DisplayLine ("The bit is set!")
Wait (3000)

end

if result == 0
DisplayLine ("The bit is not set!")
Wait (3000)

end
exitscript

Watermark Placement
Placing watermarks on an image is a useful feature of Digita-based cameras. The method us
determine where a watermark is placed on an image requires a little bit of explanation.

When specifying where a particular watermark element should be placed on an image, a num
from 0 to 100 is used for both the x and y positions. This number is the percentage of total di
from a specific corner. The x axis increases to the right and the y axis increases to the left. S
upper left of the image is 0,0 and the lower right is 100,100.

When specifying the position of a watermark element, the following rules apply:

• for x or y percentages less than 50%, the number represents the percentage distance fro
top left

• for x or y percentages greater than 50%, the number represents the percentage distance
bottom right

• for x or y percentages equal to 50%, the element is centered on that axis.

The reason for this is that when starting at 0,0 the left/top corner of the watermark element is
positioned in the upper left of the image. If the position increased in this way past the mid-po
a particular axis, the element might run off the edge of the screen on the right or bottom edg
prevent this, when the percentage passes the mid-point, the camera starts calculating distan
the right/bottom corner of the watermark element. So, placing a text watermark at position 51
would put the the right/bottom corner of the text just below and to the right of the center of th
image.

This following example script places the text "Welcome to FlashPoint!" at the top-center of an
image.

This script appears as the item "Watermark"
in the "Sample Scripts" menu.

name "Setting the default location for watermarks."
mode 0
menu "Sample Scripts"
label "Watermark"

declare u: wena, status

status = 0

Set the bit mask to the value required to turn the watermark text on.
wena = 0x40000000

Set the error checking variable to the return value from SetCameraState.
 Version 1.5
 November 18, 1999

12 Script Guide

ters.
status = SetCameraState ("wena", wena)

If an error occurs, wait 3 seconds then exit.
if status != 0

DisplayLine ("Error enabling watermarks: ", status)
Wait (3000)
goto Done

end

Set the horizontal and vertical position of the string watermark
to (50,0).
Set the watermark string to "Welcome to FlashPoint!"

status = SetCameraState ("wsxp", 50)
status = SetCameraState ("wsyp", 0)
status = SetCameraState ("wstr", "Welcome to FlashPoint!")
status = SetCameraState ("wsop", 1)

Inform camera user that the "Welcome to FlashPoint!"watermark is
is enablec, then wait 3 seconds to continue.
DisplayLine ("FlashPoint watermark enabled.")
Wait (3000)

Done:
exitscript

Japanes e Text Usage In Scripts
The following method can be used to display Japanese characters from a script. This will only work
on cameras which contain Japanese support. U.S. versions of some cameras do not contain such
support.

Some important points to be aware of in the use of Japanese text with Digita Script are:

• Japanese characters must be entered as hexadecimal values within a string using the format
\x11, where \x tells Digita Script that an extended character is being used and 11 is any valid
hexadecimal number between 1 and 255. A table showing the mapping of these numbers to
characters in the standard camera font can be found in Appendix F of the Digita Script
Reference.

• Japanese text cannot be placed in the script menu or label.

• Japanese text may only be used with the Display, DisplayLine, SetOption, and Alert commands.

• If the two bytes following the \x cannot be converted to a numeric value (e.g. "\xfp") a syntax
error will be displayed.

• In order for Japanese text to be displayed, the region code parameter (rgnc) must be set to 8.

• Japanese and English text can be mixed in the same string.

The following script is an example of how to use Japanese text in a script. If the camera the script is
loaded on supports Japanese characters, "Hello world" will be displayed in Japanese charac

This script appears as the item "Japanese Text"
on the menu "Example Scripts"

name "Japanese Text Test"
mode 0
menu "Example Scripts"
label "Japanese Text"

declare u: status, Ro_rgnc
Version 1.5
November 18, 1999

Chapter 2. Scripting Techniques

13

Capture original region code
GetCameraState ("rgnc", Ro_rgnc)

Set to the Japanese region code
and set up an error checking variable.
status = SetCameraState ("rgnc", 8)

Camera suports Japanese characters.
if status == 0

DisplayLine ("\x1A\x9A\x8A\xC3\xBD\xC4\x83\xDE\x1D\xA1")
Wait (6000)

Return camera to its original state
SetCameraState ("rgnc", Ro_rgnc)
DisplayLine ("Camera reset to prescript region code.")
Wait (3000)

end

Camera does not support Japanese characters.
if status != 0

DisplayLine (" Japanese characters not supported.")
Wait (6000)

end

exitscript
 Version 1.5
 November 18, 1999

14 Script Guide
Version 1.5
November 18, 1999

	Script Guide
	About This Book
	Chapter 1 Digita Script Language Overview
	Writing and Using Scripts
	Script Structure
	Name Statement
	Mode Statement
	Menu Statement
	Label Statement
	Exitscript Statement
	Sample Script
	Other Statements
	Comment Statements
	Declaration Statements
	Assignment Statements
	Conditional Statements
	Goto Statements
	Marker Statements
	Command Statements

	Chapter 2 Scripting Techniques
	Error Checking
	Capturing Images
	Startup Scripts
	Extracting Bits From a Bitfield
	Watermark Placement
	Japanese Text Usage In Scripts

